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I. Introduction 

The general principle of gauge invariance has led to a unified understanding of most 

of the basic forces in nature. It has suggested specific unified field theories of the 

known, and possibly new, interactions. The Standard Model has also led, how- 

ever, to a set of “Standard Puzzles”, including the problem of fermion ma.sses and 

mixings. The specific fields responsible for the elementary fermion masses and mix- 

ing angles are conventionally described in terms cf elementary scalar particles and 

Yukawa interactions. .4lthough it is conceivable that scalar interactions are rem- 

nants of some gauge structure near the weak scale. i.e. technicolorjl] and a requisite 

rxtension[Z], no compelling model of this sort has yet been given. This suggests that 

the scalar interactions may be viewed as fundamental over a large range of energies 

above Mw and extending upward for several orders of magnitude. Thus we have, in 

the problem of fermion masses and mixing angles, either a fundamental departure 

from the principle that all interactions involve gauge vector bosom, or that the 

relevant gauge interactions here are filtered through various dynamical effects over 

a large range of energies. It is not clear that the principle of gauge invariance alone 

is a reliable guide to understanding the persistent problem of fermion masses and 

mixing angles. This set of issues may be a harbinger of a great deal of structure 

to come immediately beyond the electroweak scale. Perhaps the grand desert is in 

fact a rainforest. 

Our objective in the present letter is to pursue an understanding of quark mass 

matrices, mixing angles and generational hierarchy problems within the context of 

SU(3) x SU(2) x U(1) and a nonabelian family group[3]. We are not particularly 

mindful of unification constraints, yet we hope for some simplicity and will allow 

only one Higgs-Yukawa coupling constant per charge species. Our principal aim is 

to achieve a generation hierarchy without essentially putting one in by hand and 

without much fine-tuning, even though the price paid is the introduction of more 

Higgs structure. 

We shall consider both sum and .cSU(~)~ gauged family groups and sketch 

only the general aspects. The SU(3) F model is essentially a simple first start, but 

leads to fine-tuning problems that are relaxed though do not completely disappear 

in the SU(4)p case. Successive vacuum expectation values (vev’s) completely break 
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the family symmetry, creating a mass hierarchy based on ratios of vev’s to the 

fourth power. In this way, small splittings between family symmetry breaking scales 

are magnified to account for large fermion mass splittings. The Cabibbo angle is 

qualitatively correct, depending on ((rr~~/m,)‘/~, (ndim~)““). By the same token, 

though, the long lifetime of the b must be accounted for by fortuitous cancellations 

or accidentally small parameters. \Vhile in principle CP violating phases appear. 

we do not address the question of the origin of CP violation here. Our models 

rely on an extended Higgs structure that in general has flavor-changing neutral 

current (FCNC) couplings. Several mechanisms suppress these FCNC effects. The 

full details of these models will be presented elsewherei4j. 

II. Mass Matrices in the Sum Model 

The natural choice for the transformation of .5’15’(2)~ doublet quarks is the funda- 

mental representation of SU(3)p. With the requirement of one Yukawa coupling per 

charge species, we are led to consider weak singlet quarks transforming as triplets or 

anti-triplets. Only the latter choice is consistent with a mass matrix with no near 

degeneracies, barring delicate cancellations. Therefore, we choose the Higgs dou- 

blet h to belong to the two-indexed symmetric representation, 6~(5]. (The choice 

of complex conjugate representations for both quarks and scalars is equivalent.) 

Because weak singlet up- and down-type quarks have different weak hypercharges: 

it is necessary to introduce two multiplets, h” and hi, with hypercharges +1/2 and 

-l/2, respectively. The quark Higgs-multiplet couplings are then 

SU SLj URk hik f gD &j DRk hLk (2.1) 

where QL, V,, and DR represent SV(Z), doublets, charge 2/3 singlets, and charge 

-l/3 singlets. We reserve a few comments on leptons for later. 

The family group will be gauged in order to minimize the hierarchy of mass 

scales needed to satisfy FCNC bounds. The gauge interactions play no role in 

the generation of fermion masses, and receive little discussion until the analysis of 

FCNC effects. Spectator fermions with SU(3)F quantum numbers alone must be 

introduced to cancel the SU(3)F gauge anomalies associated with the quark (and 

lepton) representations. A few of their properties are briefly discussed later. 
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The family symmetry breaking scale must be higher than the weak scale(- lo3 

TeV) 161 if large FCNC effects are to be avoided. To accomplish the splitting of weak 

and family scales, we introduce SU(3) x SU(2) x U(1) singlet scalar multiplets in 

the fundamental representation of sum, denoted generically as ai, a = 1,2. The 

breaking of the family group by a. will split the Higgs multiplets in a way consistent 

with FCNC constraints, as well as give mass to the family gauge bosons. 

We begin by examining the most general Higgs potential involving ip,, a = 1,2 

and ho, Q = U,D. The potential involving a,, alone is considered first, with the 

mixed @. - ho couplings treated as perturbations. With the @a fields shifted to 

their vacuum values, we analyze the h-sector. makir.g the fine-tunings necessary 

to arrange for weak symmetry breaking. The pattern of vev’s of hi is proportional 

to the quark mass matrix. 

Assuming that 1 (~1) j* > 1 (‘&) I* > 0, an 5’U(3)~, then an SU(2)pC SU(3)p 

rotation can be performed to set: 

w=[~). i@*qj, (2.2) 

with Iv11 > lvz,v;I 2 0. We may always engineer the “antiferromagnetic case,” 

U: = 0, which we shall presently assume; the qualitative features of our resuIts are 

unchanged by allowing nonzero u;. 

There are three types of dimension-four interactions of a,, with hg. The first 

kind are those that do not distinguish between the family quantum numbers of hq, 

so these interactions shift the overall scale of the h-masses by a constant. We must 

make two fine-tunings so that the masses-squared of h,, -&, is negative, and 

much less than U: or vz, on the order of the weak scale. 

Interactions of the form 

1k Afb ‘p’, @,, hu;r h, t (U --+ D) (2.3) 

give rise to mass contributions to the h-multiplets that distinguish between different 

components. With (@) # 0, all hQ get masses on the order of vI or vz except h$[7]. 

With only two light scalar doublets, FCNC constraints can be satisfied. 
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There is a residual global invariance Go respected by the Lagrangian with these 

two types of interactions for h with @. The third type of interaction does not 

preserve Go. The symmetry Go is a combination of Sci(3)p, a U(1) in the h, and 

quark sectors, an a U(1) in the Q sector. The global symmetry allows quark masses 

only for the third generation and no mixing. 

The third type of @ - h interaction contains c-tensors. The unique dimension-4 

interactions formed with the given fields and +-tensors are: 

Xab @f @j’ h”“’ h”’ 
0 bU D cjtl tj~k~l~ + h.c. (2.4) 

where for economy X21 = 0. These couplings break Go to a ZS subgroup. The Z: 

symmetry allows the first two quark generations to get masses but it forbids the 

mixing of the third generation with the other two. We return to the problem of 

third generation mixing below. 

The quark mass matrices are determined by the parameters in the Higgs poten- 

tial exhibited in (2.3) and (2.4). W e assume that the parameters specifying any one 

set of interactions are of about the same size e.g. Aull Y A~lz or Auzz, and expand 

quantities in the ratio clz = vz/vl, 1~~~1 5 1. In principle we should diagonalize 

the full scalar mass matrix, and write an effective Lagrangian in terms of the light 

scalars composed primarily of hy. The light scalar VU’s break sum and generate 

quark masses. In practice, the task is simplified for two reasons: t,he ratio m,/ma 

requires the Higgs potential parameters to obey l-Y& < 1, and large portions of 

the scalar mass matrix are decoupled. The qualitative features of the quark mass 

matrices are obtained by the diagonalization of the scalar mass matrices arising 

from (2.3), then perturbativeiy treating the interactions in (2.4). We proceed to 

describe the results. 

The mass matrix written as 

(Al;); = A!* C 0: > < Qbj > 

is easily diagonalized. Expanding in terms of the ratio ~12, we find that M,$ in 

CM;); &it h$ - (@,)f h&, h;” 

(2.5) 

(2.6) 

is diagonalized by the rotation 
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1 -6* 0 

Rq rz co 1 0 i I (2.7) 

0 0 1 

where eQ = (Aqlz;Agll) sir. Here, adding in the overall -1~; to the scalar masses 

Di - & E diag{Agllvf - &,Agllvf(a~ - 1)s; - pi, -pi}, (2.8) 

with a~ = AQ~~AQ~~/A~~~ assumed to be greater than 1. Since $, is tuned for 

electro-weak breaking, its only appreciable effect is to give mass to hy. 

The rotations, Xv and R,, together with the first order perturb&w treatment 

of the induced tadpoles from (2.4) generate the quark mass matrices. The tadpoles 

feed down the ueu’s of hG3 into the hz’, i, j = 1,2 sector. The Yukawa couplings of 

the h’ scalars are 

gv(&&)j~~kh’~ +g~@&)~D;,h’~. (2.9) 

The 5’U(2)~ singlet quarks have already been rotated by RQ, since there are no 

charged currents with singlet quarks. Explicitly, the partially rotated up-type quark 

mass matrix (which is symmetric) is 

Mb = grr < h$” > (2.10) 

ud(X,l$r - XtzftzW +X&)/&m 

= su ud(=lleU - Xn~u)/A~n ‘JdXlli’((aU - l)c;A”ll) 

0 0 ‘I U” 

and similarly for < hz’ >. The particular pattern in eiz arises because, for example, 

h;” with mass - ttt receives a tadpole - v&, while hvZ with mass - vr receives a 

tadpole - ufvd. 

By assumption the Xii are all of the same order so that the ratio of the first 

and second generation masses is dominated by their relative dependence on cu or 

co. Extracting this dependence gives 

(m,, m,,mt) = gU(yu &‘d, y, vd/&, vu), 

(mdr m,, mb) u gD(Yd~~k ~vui&, Vd)l (2.11) 
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where I$ is a function of ,U,, and A*,&. Roughly, m,,“m, - 62, and md/m, - $,. The 

unusualfact that these ratios depend on tiZ to the fourth (not second) power has the 

desireable feature that the ratio err does not have to be especially small; ti2 = l/3 

will be assumed hereafter. The matrix entering eq.(2.10) is nearly diagonal, so to 

a good approximation, the K-M matrix is K y Ru Rz. Corrections are of order 

& or smaller. The unconventional approximate relation between the ratios of first 

and second generation fermion masses to the expansion parameter ~12 means that 

the Cabibbo angle depends approximately on the fourth roots of the ratios of light 

quark masses. In the limit of Yd = Y, and Y, = k; in eq.(2.11), the Cabibbo angle 

is 

0C.b = (md/ms)f - (m,/m,)‘. (2.12) 

For quark masses md = 10 MeV, m, = 5 MeV, m3 = 150 MeV, and m, = 1.2 GeV, 

this relation is comparable to the often quoted result[S] 0o.a = (md/m,) $. There 

are too many parameters, however, to make a precise statement about the size of 

the Cabibbo angle. 

The ratio of m,/mb may be used to estimate X, 

m, vu 4 -ze ---xi. 
mb vd m$,,, 

(2.13) 

Assuming v, = ud, IX/ 2 IO-‘, an unsatisfactorily small value for a tree-level pa- 

rameter. One of the reasons for our preference of SU(4)p over SU(3)p is that the 

parameters corresponding to X in the Sum case must be generated radiatively 

and are therefore naturally small. 

Third generation mixing arises through effects generated by additional fields. 

One appealing approach is to introduce a third SU(3) x SU(2) x U(1) singlet scalar 

multiplet, @s. With appropriate relabelings of a,., it can be assumed that the ueu’s 

of @i and ipa are specified by eq.(2.2), and the vev of Qs is 

4 
<@3>= - , 

ii 
v:’ 

T3 

(2.14) 
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with /u,J > /us/ 1 jusj. The vev z’s breaks the Zz symmetry, so now the third 

generation mixes with the first two. We will carry out e.xpansions in ttr and (2s = 

V3/V?. 

Dropping the subscript U or D, the matrix analogous to that of eq.(2.7) is 

t 

1 -an~lz h.enm 

R- a12~12 1 -bmm 

I 

(2.15) 

a13~12~23 hm 1 

where ejk = AjkIA11 , b23 = (az3 - (L~VJI~)/(QZ - a:*) , bt3 = bz3a12 - ~3. For 

convenience, uy and t$ have been set to zero. Setting c:s c~ l/40 yieids an appropri- 

ate mixing between the second and third generations. To leading order, the ratio 

m,imb is independent of cr3, so unlike the Fritzsch case, Obc cannot be related to 

quark mass ratios. Third family mixin, 0 with the first is even smaller than Bb,. 

The diagonalized mass matrices analogous to eq.(2.8) are 

1 0 0 

D2 ‘- Alv; 0 (am - &)EIZ* b;3(:zz I , (2.16) 

0 0 [a33 - af3 - - 42);~2~~23~ 

dropping subscripts U or D again. We shall see in section 4 that FCNC effects 

require Al UT X (170 TeV)‘. The form for Dz makes it clear that hc is much lighter 

than the other members of their respective multiplets because & is small, but it 

may be necessary to adjust pi to keep the light scalar masses below 1 TeV. 

The masses and mixing angles in this 5’U(3)~ model with three 0’s can be 

satisfactorily chosen, but the small values of the X’s in (2.4) are rather artificial. 

The motivation for the study of SU(4) F is to attempt to avoid this difficulty. 

III. The sum Model 

The SU(4)p extension of the model presented in the last section yields analogous 

results. Aside from the obvious extra generation, the main differences lie in the 

Q - h interactions. Interactions of (2.3) are the same in the sum case, but the 

Gs violating terms corresponding to (2.4) are dimension-6. There are six distinct 

interactions of this type which can be written in the form 
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Led 
,Mz 0; C’;’ Qf a;’ hi’ hZ;“’ e,ki,,, f,‘k’l’,,,’ i h.C 13.1) 

We expect such terms are radiatively induced, with ;\f of order the Sum breaking 

scale, and thus naturally small; (more scalars in addition to @a and h, must be 

introduced to generate these effective operators[4]). 

The SU(3) x SU(2) x U(1) singlet fields a0, a = 1,2,3 can be assumed to take 

VOJ’S VI 4 
0 

< a’1 >= 

Ll L 
vz 

0 
) <&=.= 

0 

0 0 

II:’ 

1, :i 
i a3 A= 0: 

u3 ’ 
0 

(3.2) 

where lvI/ > Iv*/ > iu3; > o 

The structure of the three family sector is identical to the SU(3)p model with 

three triplet scalars. Now: hg enjoy special status as the light scalars. The vev’s 

of the symmetric h’, are 

L 

~Dll+;,h 

< h’, >” 
‘,Ol&;,vu 7,DZ?43% 

0Dl3+;3% 7D2343h 

.I 

(3.3) 
‘7D33’-‘, 

0 0 0 u@! 

The nn’s are functions of X’s and A’s, the details of which are not particularly 

relevant for our discussion here. 

Our conclusions about the Cabibbo angle and the ratios of m,,/m, and md/ms 

are qualitatively unchanged by the transition from SU(~).F to SU(4)p. The mass 

ratios scale as L&. Now, m,/mb and mc/mf are of order (4s. suggesting that ~2s is 

not particularly small, tss 2 215. 

In the absense of other scalar interactions, the dominant contribution to the Ii- 

M matrix K is again RuRE where RQ is given by eq.(2.15). Evident from eq.(3.3), 

additional rotations are small compared to RQ. Third generation mixing is typicall) 

too large, but cancellations between R” and Rg, or small values for coefficients such 

as b?3 of eq.(2.15) could lead to acceptable values. 

Fourth generation mixing can arise only after the addition of more fields. .% 

field a4 could be added, but it would suffer the same fine tunings called for by @s 
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in Sum. .4n aiternative is to add heavy fields which radiatively induce effective 

operators of the type 

z,, 
hP 

Ip’ h h”’ E (1 Q,i Q ~mn, @T @; a: + h.c 

4 specific example may be found in ref. [4]. These effective operators give 

The origin of the suppression factors proportional to cz3 is the subgroup S’v(?), 

which in the limit ua - 0 demands that the tadpoie of h’43 vanish while the tadpole 

of h’33 does not. .4ssuming the factor in parentheses is of order one, the mixing 

between b’ and b is - (m~/m~~)tirc~s g lo-’ This suggests that the fourth genera- 

tion is weakly mixed, Bbgf g 10-r. Assuming rnb z 100 GeV, a typical lifetime is of 

order 10-i* sec. With Baot so small, the K-M matrix of the first three generations 

is little affected by fourth generation mixing, as assumed previously. 

The ratio of mb/‘mb, can be used to estimate the size in Sum of the X’s again 

assumed to be of roughly the same magnitude. 

(3.6) 

where 0:s is given in eq.(2.16). Taking M* = WI, mh,/na, ZZ l/5, and u, = vd gives 

1x1 s l/30. This is a significant improvement over the SCJ(3)f model, in that the 

small values of the X’s can be understood as a radiative effect in the sum model. 

IV. General considerations and conclusions 

Bounds on the flavor breaking scale come from low energy measurements of favor 

violating processes, notably the Kr, - Ks mass difference, AMK. Family gauge 

bosons, as well as neutral Higgs scalars can mediate AS = 2 processes at tree 

level. There are charged scalar contributions to AM, at one loop, but they are 

automatically suppressed if the tree level constraints are satisfied. We shall calculate 

the tree level contributions to AM K, requiring the gauge boson and scalar effects 

each separately to be less than the observed value in magnitude. 
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The terms in the effective AS = 2 Hamiitonian due to family gauge boson 

exchange can be written as a sum of four-quark operators 0; with coefficients c,: 

(Ny=z) gouge bason = c ci 0;. (4.1) 

One such operator is (~~~@(dL)(~n~~dn) with coefficient approximately -(I/U: + 

$/(Zv~)). Of the other terms, some have coefficients suppressed by rotation angles, 

others have operator structure which in many modelsI9] leads to smaller matrix 

elements. As a very rough guide, we use the vacuum insertion approximation to 

estimate the matrix element of the four-quark operators. Setting the magnitudes 

of these contributions to AMK to be less than the observed value yields 

($ + $)-I 2 (4 x lo3 TeV)* 

If we take to = l/2, the bound is satisfied by 

v1 23~s 2 6x103TeV. (4.3) 

The gauge boson contribution to AMK has the same sign as the experimental result. 

If the family symmetry had not been gauged, the existence of familons arising from 

the spontaneous breaking of the symmetry would have put a significantly more 

stringent bound on vi[ 71. 

The contribution to AM, from a complex scalar with interaction gc,fH(zLss f 

SLUR) + h.c. is 

< K”~up,s=*JRo >.aco,ar = -3 < IPI[(s&)(S&) + (L - R)]pP , .(4.4) 
H 

Again using the vacuum approximation to the matrix element, 

z 2 4.3 x lo3 TeV. 
Self 

(4.5) 

The mass shift has the opposite sign relative to the gauge boson contribution. b\‘e 

proceed to describe the calculation of the effective couplings and corresponding 

mass limits for the various scalars in the SU(3)s, and briefly Sum, theories. 

For simpiicity, we begin with the SU(3) F model. The calculation of the FCNC 

effects of the scalars should be carried out in a mass eigenstate basis. This requires 
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that the mixings of hb from the interactions of (2.4) be diagonalized. There are two 

classes of scalars: those with masses-squared proportional to uf or ui (we call these 

“heavy”), and the two “light” Weinberg-Salam doublets. We begin with the second 

set. Before including the third triplet Q 3, there is a natural Glashow-Weinberg- 

Paschos[lO] mechanism of Aavor conservation by the light scalars. Only one light 

Higgs scalar couples to the d-s sector, so its Yukawa couplings are diagonalized 

with the quark mass matrix. .\ different light scalar gives mass to the b quark, 

but the Z2 symmetry protects against flavor violation due to scalar mixing. When 

the third triplet is incorporated to make the model realistic. the two light complex 

scalars mix We estimate the mixing to be on the order of 

,,,2 ,,‘i3 h’i3 - x ,,? 02 h’33 h’z, 
1 bc ” (4.6) 

This may be large: ,Yu~B~, - (750 GeV) , * indicatinv that the light mass eigen- 0 

states may have masses close to their unitarity bound. Their effect on AMK is 

small, however, as gc,f r, f?b, Oad go, proportional to third generation mixing angles. 

Mixing of hz3 and h’$ in the absence of third generation fermion mixing does not 

lead to FCNC effects because the diagonalization of the quark mass matrices still 

diagonalizes the couplings of the light scalar mass eigenstates to the quark mass 

eigenstates. 

Although some of the heavy scalars have suppressed strangeness-changing Yuk- 

awa’s, the mass eigenstate related to /L: has a full strength coupling, gc,, - gn = 

ma/vd z 0.03. The mass bound on it is approximately I70 TeV. The lightest of 

the heavy scalars have mass-squared - vi; the mass eigenstate related to hg has 

the largest g.,,. It is approximately &go, arising from the rotation required to 

diagonalire Mb of eq.(2.10). From AM,, this scalar’s mass must be greater than 

ei 1’70 TeV. However, its mass has already been indirectly bounded by co . I70 

TeV following from the first bound and the pattern of scalar masses, so this second 

direct bound is already satisfied. 

The constraints on the S’U(4)p Higgs scalars are rather similar. The effective 

FCNC Yukawa’s of the light scalars are suppressed by the fourth generation mixing 

angles. The Yukawa go in SU(4)F is mb,/rnb times go in SU(3)s The fourth 

generation charge -1,‘3 quark has a mass greater than 22 GeV[ll], so gD is some 

factor of 5 or more larger in SLT(~).Z .Ul of the heavy scalar boson masses are 

therefore bounded by numbers a factor of 5 larger than those quoted above. 
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There are also constraints arising from limits on B0 - o0 and Do ~ ijo mixing. 

The limits from B” - @’ are not as severe as from K“ - ii” because of the poorer 

experimental limits and the small splittings among the heavy h scalars. Simply 

due to the relative precision of the experimental measurements. the bounds from 

Do - Ds mixing are not as severe unless gn /gD Z 10. 

Within our framework the charged leptons cannot be incorporated realistically 

into the scheme with only two weak Higgs doublet representations. Depending on 

whether lepton doublets transform as the fundamental or conjugate fundamental 

representations of the horizontal group, we are led to two different, but both wrong, 

sets of mass relations. In one case. m,Jm, = m,im, and m,/na = m,/m7 For 

the other, m,/m, = m,/n, and m,/m, = m,/m, are obtained. This second case. 

analysed by Glashowjl21, predicts a top quark mass on the order of 20 GeV. 

Spectator fermions, SU(3) x SU(2) x U(1) singlets with family symmetry quan- 

tum numbers, are a necessity for our models. Low energy experiments, notably 

K + rr+nothing, constrain their effective couplings with ordinary matter. As inter- 

actions between spectators and quarks must involve family gauge bosons, spectator 

contributions to rare processes are adequately suppressed. Cosmological consider- 

ations provide more general restrictions. The lightest spectator, which is stable, 

should not contribute too much to the present energy density of the universe. The 

long-lived (rZ1 set) and stable spectator fermion energy density must be sufficiently 

low at the time of nucleosynthesis to avoid dramatically changing the expansion rate 

of the universe; however, the decoupling temperature for the spectators is sufficientiy 

high that this should not be a serious problem. The precise spectator content is 

dictated, in part, by the lepton family representations. In view of the considerable 

freedom in the choice of representations of spectators, an analysis of an example 

will be reiegated to ref.(4]. 

The motivation of this effort has been to examine how the successive breaking 

of a nonabelian family symmetry leads to hierarchies in quark masses. Within our 

framework, it is necessary to add a fourth generation to generate fermion mass 

hierarchies without the input of small tree level parameters. In the SU(4)F theory, 

the fermion mass ratios among the first three generations scale as the fourth power 

of ratios of veu’s breaking the family group. .4 rather small hierarchy in the breaking 

of sum leads to acceptable fermion mass ratios. 
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The quark mass matrices depended on too many parameters for predictive re- 

lations between mixing angles and mass ratios. It is, in general, quite difficult to 

avoid this situation without imposing zeroes in the quark mass matrices. Our mod- 

els reproduce the qualitative feature that the K-M angles fall off away from the 

diagonal. .I novel expression for Boa* is suggested, however, the small size of the 

third generation mixing angles is not explained. 

The versions of the nonabelian family models presented here have unsuccessful 

relations between ratios of quark and lepton masses with the most natural family 

representation assignments. Furthermore, the number of additional fields required 

is unsatisfying. Nevertheless, our successes suggest that the general idea of using a 

nonabelian symmetry to generate realistic Yukawa couplings from a minimal set of 

fundamental Yukawa’s is worthy of further study. 
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